DYNAMIC SURFACE WATER-GROUNDWATER INTERACTIONS AND NITROGEN CYCLING IN A TIDALLY INFLUENCED RIVER

Cole Musial, Audrey Sawyer, Rebecca Barnes, Samuel Bray, Deon Knights

Conceptual Model

- Stage fluctuations in tidal rivers drive bank storage
- Bank storage zones may be intense zones of nitrogen transformation

Tidal Surface Water-Groundwater Exchange

River Discharge

Surface Water-Groundwater Interactions

High Tide NO3+NO2

Conclusions

- Low river discharge corresponds with reversals in surface water-groundwater exchange. Peak aquifer discharge is at times of intermediate stream discharge.
- Tidal rivers are dynamic environments for nutrient cycling
- DO and nitrate vary with tides near water table and streambed due to surface watergroundwater exchange

Acknowledgments

Anthony Aufdenkampe Ph.D. Louis Kaplan, Ph.D.

Holly Michael Chris Russoniello Kaileigh Calhoun

THE GEOLOGICAL SOCIETY OF AMERICA®

Hale Byrnes House, Kim and Ralph Burdick

